
Development of silver resistance:  
a focus on wound care

The extensive use of silver-based products 
has led the release and accumulation of 
silver in river, soil and other environments 

(Kale et al, 2021), this makes it much more 
likely that bacteria will develop resistance to 
silver. The aim of this article is to undertake 
a scoping review to identify the present 
state of antimicrobial resistance (AMR) to 
silver, particularly in regard to wound care 
pathogens, and to discuss the implications of 
these findings in terms of current and future 
treatment options. 

Silver in wound care-related healthcare
Infected wounds may require topical and/or 
systemic antimicrobial therapy (depending 
on the level of infection) (Wound Infection 
in Clinical Practice Working Group, 2008). 
However, the rise of multidrug-resistant 
bacteria has shifted the preference away 
from antibiotics towards topical antimicrobial 
agents, such as antiseptics to prevent and treat 
infections, including biofilms (Schultz et al, 2017). 

The development and use of wound 
dressings that offer broad-spectrum 
antimicrobial activity has been significant with 
the use of several mechanisms of action being 
employed (Yousefian et al, 2023), including the 
use of silver (Khansa et al, 2019), iodine (Barreto 
et al, 2020), polyhexamethylene biguanide 
(PHMB) (Rippon et al, 2023), dialkylcarbamoyl 
chloride (DACC) (Totty et al, 2017; Rippon et 

al, 2021) or medical grade (Manuka) honey 
(Scepankova et al, 2021). Antimicrobial wound 
dressings are widely used in wound care for 
their broad-spectrum antimicrobial properties 
(Yousefian et al, 2023). Among these, silver has 
been a primary choice for over two decades 
due to its effectiveness in combating infections 
and preventing biofilm formation (Frei 
et al, 2023).

Different forms of silver in wound care
Silver can be used in wound care in several 
different forms, including silver nitrate (a silver 
salt), silver sulfadiazine (a cream containing 
silver nitrate combined with sulfadiazine) 
and silver nanoparticles (AgNPs) (including 
nanocrystalline silver). Several silver-
impregnated wound dressings have also been 
developed that provide silver to the wound. 
The role of AgNPs as an antimicrobial has 
gained significant attention due to their unique 
physiochemical properties that arise from the 
nanoscale dimensions of these particles (Rybka 
et al, 2022; Jangid et al, 2024). The positively 
charged silver ion (Ag+) is the predominant 
form of silver that has antimicrobial activity 
(Lansdown, 2006; Percival et al, 2012), targeting 
microorganisms via several different modes of 
action (Summer et al, 2024). However, AgNPs 
can have direct antimicrobial activity by, for 
example, interacting with bacterial cell walls 
(Yin et al, 2020; Summer et al, 2024).
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The extensive use of silver-based products has led to the presence of silver in a 
variety of environments, including healthcare scenarios. This has increased the risk 
of development of silver resistance in bacteria. The authors carried out a systematic 
scoping review to assess the current state of antimicrobial resistance to silver, 
summarise the studies that discuss the rapidly developing issue of silver resistance in 
microorganisms (including wound bacteria) and evaluate its implications for wound 
care. A total of 105 articles were included in the review, indicating that silver resistance 
is an increasing topic in wound care, particularly in wound-derived microorganisms, 
posing a significant and increasing issue. This review identified several alternate 
options to silver-based therapies, including those that use the physical properties 
of wound dressings rather than chemical antimicrobial agents. While silver is an 
important tool for treating wound infections, its use should be cautious and the 
development of new antimicrobial agents that rely on alternate modes of action 
should be developed. To ensure that there are effective antimicrobial therapies 
available for wound care in the future, more studies should be performed to improve 
understanding on silver resistance, and for the development of antimicrobial agents 
and treatments that minimise the development of resistance.
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Development of silver resistance
Despite its widespread use, concerns have 
emerged regarding the long-term effects of 
environmental exposure and the potential 
development of bacterial resistance to silver 
(Ferdous and Nemmar, 2020). This development 
is worrisome, as indiscriminate use of silver 
compounds, similar to the overuse of antibiotics, 
could reduce their effectiveness in treating 
infections (McNeilly et al, 2021). AgNPs, while 
effective, accumulating evidence suggests that 
bacteria can show resistance to AgNPs (Kamat 
and Kumari, 2023; Li and Xu, 2024; Rodrigues 
et al, 2024).

Silver resistance associated with wound care
The overuse of silver (silver ions and 
nanoparticles) in commercially available 
healthcare products, including wound dressings, 
is a growing as a potential health concern 
due to the possible selection of tolerant or 
resistant bacteria, diverging from the once 
commonly held perception that bacteria could 
not develop resistance to silver (McNeilly et 
al, 2021), and silver resistance is an important 
issue for healthcare professionals (Hosny et 
al., 2019; McNeilly et al, 2021; Blackburn et al., 
2023). Percival et al (2019) noted that there are 
only a limited number of studies documenting 
evidence of silver resistance in bacteria.

However, in a review of the emerging 
concern for silver resistance in microorganisms, 
McNeilly et al (2021) highlight that many 
important pathogenic bacteria show silver 
resistance (Gupta et al, 1999; Gunawan et al, 
2013; Muller and Merrett, 2014; Panáček et al, 
2018; Hosny et al, 2019; Valentin et al, 2020). 
Hosny et al (2019), in their study of silver 
resistance in clinical isolates from wounds 
and burns, note that their study “… is alarming 
regarding the spread of phenotypic silver-
resistance … in species where they were not 

detectable before”. Blackburn et al (2023) 
recently reviewed the evidence on AMR linked 
to antimicrobial use and observed that there 
is limited evidence to indicate that topical 
antimicrobials, including those containing 
silver, significantly contribute to resistance 
development. However, despite the limited 
clinical evidence, silver resistance is a critical 
issue for healthcare professionals, and the 
potential threat of resistance is a continuing 
essential area for exploration.

Silver resistance has become an increasingly 
critical area of research [Figure 1]. Recent 
research highlights the emergence of silver-
resistant bacteria (Norton and Finley, 2021), the 
findings of which have been seen in studies 
in clinical settings where clinical isolates have 
been shown to exhibit silver resistance [Table 1]. 

Figure 1 

Figure 1. Articles 
published per year and 
cumulatively related 
to silver resistance in 
bacteria between 1975 
and 2023.

Table 1. Studies demonstrating silver resistant in pathogens.

Microorganism Form of silver Reference

P. aeruginosa1 Silver nitrate Muller and Merrett (2014)

Silver nanoparticles Panáček et al (2018); Liao 
et al (2019)

S. aureus1 Silver nitrate Hosny et al (2019)

Nanosilver Valentin et al (2020)

A. baumannii1 Ionic silver McNeilly et al (2021)

Silver nanoparticles McNeilly et al (2021)

E. coli Ionic silver Blanco Massani et al (2018)

Silver nanoparticles Panáček et al (2018)

K. pneumoniae1 Silver nitrate Hanczvikkel et al (2018)

Proteus spp. Nanosilver Saeb et al (2017)

1A WHO-designated critical priority pathogen that poses a high threat to public 
health characterised by resistance to multiple antibiotics (WHO, 2024)
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This resistance could significantly impact current 
wound care practices, and the effectiveness 
of silver-containing medical devices, including 
silver wound dressings. For instance, laboratory 
analyses have demonstrated that some silver-
impregnated dressings are less effective against 
resistant strains, suggesting the need for careful 
monitoring and judicious use of silver-based 
treatments (Sütterlin et al, 2012).

The issue of silver resistance aligns with 
broader concerns about AMR. Pathogens 
such as E. coli, S. aureus, A. baumannii, and P. 
aeruginosa have shown varying levels of silver 
resistance [Table 1]. These microorganisms are 
included in a group of important pathogens 
that are collectively referred to as the 
ESKAPE pathogens (Rice, 2008; Santajit and 
Indrawattana, 2016) and leading contributors 
to hospital-acquired infections and drug 
resistance (Ayobami et al, 2022; Bereanu 
et al, 2024). 

A little-understood aspect of AMR is how 
heavy metals can impact antibiotic resistance. 
There are concerns of the coexistence of 
antibiotic and metal resistance: observational 
studies show that antibiotic-resistant bacteria 
are found at elevated levels in locations 
contaminated with metals (Gullberg et al, 2014). 
Antibiotic and metal resistance co-selection is 
where exposure to one selective agent allows 
adaptation to a second selective agent, i.e., 
where one antimicrobial (e.g., silver) selects 
for a resistance mechanism for both itself, 
and another antimicrobial (e.g., one or more 
antibiotics) (Gillieatt and Coleman, 2024). 
Three mechanisms have been suggested: 
co-resistance, where genes for resistance to 
different agents (e.g., silver and antibiotics) 
are on the same genetic element such as 
a plasmid, cross-resistance, where a single 
resistance mechanism (e.g., an efflux pump) 
provides resistance to multiple agents, and 
co-regulation, where the expression of multiple 
resistance genes is controlled by a shared 
regulatory system leading to simultaneous 
activation of resistance to different agents.

Implications of silver resistance in wound care
Given these developments, there is an urgent 
need to identify and utilize antimicrobial 
agents that are effective, non-toxic, and do 
not promote resistance. For example, DACC, 

a relatively new and alternate antimicrobial 
treatment option in wound care, shows promise 
in meeting these criteria (Totty et al, 2017; 
Rippon et al, 2021; Rippon et al, 2023a). Unlike 
silver, which acts via chemical mechanisms, 
DACC works by physically disrupting microbial 
adhesion, reducing the risk of resistance, 
and promoting healing without cytotoxic or 
adverse effects. Such alternatives could play a 
crucial role in addressing the challenges posed 
by AMR.

Methods
A preliminary search of the literature in 
PubMed using the search strategy ““silver” 
and resistance”” was conducted to assess 
the extent of the issue of silver resistance. 
A total of 9,531 references were identified 
from Jan-1975 (the first encountered silver-
resistance was detected during an outbreak 
on a burns ward in 1975 (McHugh et al, 1975)) 
to end of 2023, with a further 852 articles being 
published between Jan-2024 and Oct-2024. 
Additionally, adding keywords “bacteria” and 
“microorganism” to the search strategy (to 
improve the relevance of the search) identified 
5,502 references published in PubMed related 
to silver resistance in microorganisms, Note 
that, since 2020, there have been over 500 
articles published per year [Figure 1] with, 
to Oct-2024, a further 514 articles have been 
published so far.

This scoping review was conducted in a 
semi-formal process and included several 
stages; (1) defining the research question; (2) 
identifying relevant studies; (3) study selection; 
(4) summarising and reporting the results. The 
research question was defined using the PEO 
framework [Table 2], which we considered an 
appropriate framework for our review (Doody 
and Bailey, 2016). The PEO framework breaks 
the topic of our review into three separate 
areas: the Population to focus on in the review, 
the Exposure (the issue of interest), and the 
Outcomes or themes to examine. Once the 
scope of the review was defined (to review 
the evidence for the development of silver 
resistance in microorganisms) relevant studies 
were identified. The PRISMA-ScR framework was 
used for reporting the results [Figure 2].

Research questions
Several research questions were identified as 
part of the development process for this review:
1.	 Is silver resistance a rapidly developing issue 

in microorganism populations?
2.	 Is silver resistance a rapidly developing issue 

in wound pathogens?
3.	 What are the implications of silver resistance 

for wound care? 

Table 2. PEO framework to identify the research question.

Population Patients and pre-clinical studies

Exposure Wound infection

Outcome Silver resistance
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Search strategy and eligibility criteria
PubMed was searched using keywords “silver,” 
“resistant,” “resistance,” “bacteria,” “bacterial,” 
and “antimicrobial.” Articles published between 
January 1975 and October 15, 2024 were 
identified. Inclusion criteria for the search 
included primary evidence studies reporting 
silver resistance, laboratory, and clinical 
studies, with full-text articles written in the 
English language. Exclusion criteria included 
review articles, and papers not published in the 
English language.

Study selection, data extraction, and analysis
The process for study selection is outlined 
in the PRISMA-ScR flow diagram [Figure 2]. 
The titles and abstracts of each result was 
screened against the inclusion and exclusion 
criteria. Full texts of articles meeting the 
inclusion criteria were independently assessed 
by two authors (MR and AR). Following full-
text screening, studies that met the inclusion 
criteria underwent data extraction. Collated 
information included the following data 
points: study aims and objectives; design and 
methodology; sample size; wound types; details 
of the outcome measures; and main study 
results [Table 3]. The primary outcome was the 
reporting of silver resistance in microorganisms.

Results
The findings were summarised and described 
narratively, under various collective headings 
based upon the research questions.
The search identified 5,295 potential records, 
and records from other sources (e.g., hand 
searching) (n=9) were added, resulting in 5,304 
records. Following review of titles and abstracts, 
105 full text articles were retrieved and included 
in the narrative review [Figure 2]. An overview 
of the study characteristics is presented in 
Table 4.

Note that many articles were identified 
in the initial review that were related to 
the use of “silver” against “drug-resistant” 
microorganisms (which did not involve any 
assessment of silver resistance); this led to 

them being captured by the search strategy. 
It was felt that adding any clarifying search 
keywords to try and reduce the number of 
these non-relevant articles may have impacted 
on capturing potentially relevant articles.

Discussion
Table 5 indicates the articles featuring 
ESKAPE pathogens (and other important 
microorganisms) reported to show phenotypic 
silver resistance.

Is silver resistance a rapidly developing issue 
in microorganism populations?
Considering the extensive use of silver ions as 
an antimicrobial in domestic, industrial, and 
medical applications (Ferdous and Nemmar, 
2020), concerns have been raised over the 
potential for silver ion resistance emergence 
in bacteria of clinical relevance and to thereby 
compromise its therapeutic utility. Bacterial 
resistance to cationic silver (Ag+) has been 

Figure 2

Figure 2. PRISMA-ScR 
flow diagram to indicate 
the search results based 
upon the search strategy.

Table 3. Main article assessment criteria.

Criteria Summary

Aims/objectives Articles reporting on silver resistance

Design/methodology Only reporting primary pre-clinical and clinical evidence

Wound type Skin wounds (acute and chronic wounds)

Outcome measures Outcome measures as set out in study methodology related to silver 
resistance in microorganisms

Main results Results related to stated outcome measures
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Table 4. Overview of characteristics of silver resistance studies.

Author Study aim Form of silver

Alhajjar et al (2022) Adaptation of E. coli for resistance to Ag-NPs by repeated exposure to sub-MICs 
of the antimicrobials

Silver nanoparticles

Ali et al (2020) Molecular basis of AgrR-mediated gene expression resulting in silver resistance N/A

Alotaibi et al (2022) Assessment of whether combinations of AgNPs and conventional antimicrobials 
produce synergistic responses

Silver nanoparticles

Andrade et al (2018) Search for presence of acquired silver resistance genes in E. cloacae Complex 
and E. aerogenes

N/A

Annear et al (1976) Demonstrate transferability of silver resistance in E. cloacae isolated from burn 
wound

Silver nitrate

Arrault et al (2023) Assessment of solution structures of SilF in its free and Ag-bound forms N/A

Arrieta-Gisasola et al 
(2025)

Detection of mobile genetic elements conferring heavy metal resistance in 
Salmonella

N/A

Ashraf et al (2014) Efficacy of lysozyme-coated AgNPs for their antimicrobial activity against panel 
of bacteria

Silver nanoparticles

Asiani et al (2016) Testing model of exporting Ag+ in Salmonella via various sil operon components N/A

Babel et al (2021) Assessment of interplay between SilE and SilB peptides for silver resistance N/A

Babu et al (2011) Analysis of global transcriptome of B. cereus in response to silver nitrate stress Silver nitrate

Bearson et al (2020) Role of Salmonella Genetic Island 4 in metal tolerance of S. enterica N/A

Billman-Jacobe et al 
(2018)

Assessment of pSTM6-275 plasmid of S. enterica to confer heavy metal 
resistance

N/A

Binsuwaidan et al (2024) Effects of exposure to ionic silver in wound-associated bacterial pathogens Silver nitrate

Brady et al (2003) Assessment of silver disinfectant persistence to pathogenic bacteria on treated 
surfaces 

Silver nitrate

Bridges et al (1979) Emergence of silver-resistant P. aeruginosa in a burns unit Silver nitrate

Chabert et al (2018) Molecular analysis of structural folding of SulE model peptides N/A

Chalmers et al (2018) Assessment of genetic elements involved in heavy metal resistance in swine E. 
coli

N/A

Cidre et al (2017) Assessment of genetic elements of resistance and their interplay N/A

Clark et al (2020) Distribution of heavy metal resistance elements in Salmonella populations N/A

Dunne et al (2017) Complete genomic sequence of E. coli strain detailing silver resistance genetic 
elements

N/A

Elarabi et al (2023) Assessment of genome of R. planticola detailing heavy metal resistance 
elements

N/A

Elbehiry et al (2019) Evaluation of resistance to AgNPs and AuNPs in S. aureus Silver nanoparticles

Elkrewi et al (2017) Assessment of prevalence of cryptic Ag+ resistance amongst clinical isolates of 
Gram-negative bacteria

Silver nitrate

Finley et al (2015) Identification of first strains of clinical bacteria expressing clinically relevant 
silver resistance

Silver nitrate

Foka et al (2020) Genetic analysis and silver resistance gene detection in vancomycin-resistant 
enterococci

N/A
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Table 4. Overview of characteristics of silver resistance studies.

Author Study aim Form of silver

Franke et al (2001) Characterisation of silver resistance system in E. coli N/A

Fuentes-Castillo et al 
(2021)

Genomic characterisation multidrug resistant E. coli N/A

Gokulan et al (2017) Assessment of specificity of silver resistance genes in Salmonella Typhimurium Silver nitrate

González-Fernández et 
al (2020)

Assessment of antibacterial effect of silver nanorings compared with other 
AgNPs in silver-resistant Salmonella

Silver nanorings 
(AgNPs)

Graves et al (2015) Characterisation of rapid evolution of AgNP resistance in E. coli Silver nanoparticles

Grim et al (2013) Genetic analysis of pathogen Cronobacter spp. including silver resistance 
genes

N/A

Gugala et al (2018) Chemical genetic screen of E. coli to identify silver sensitive or resistant deletion 
strains

Silver nitrate

Gugala et al (2019) Susceptibility of E. coli, P. aeruginosa and S. aureus to silver Silver nitrate

Gullberg et al (2014) Effects on low level antibiotics and heavy metals on selection of ESBL plasmid 
identified in K. pneumoniae and E. coli

Ionic silver

Guo et al (2019) Assessment of the impact of AgNPs on P. aeruginosa biofilm Silver nanoparticles

Gupta et al (1998) Effect of halides on plasmid-mediated silver resistance in E. coli Silver nitrate

Gupta et al (2001) Assessment of diversity of silver resistance genes in plasmids Silver nitrate

Gupta (1999) Use RT-PCR to characterise to analyse transcripts that form long multi-gene 
operons

N/A

Haefeli et al (1984) Characterisation of a silver-resistant P. stutzeri isolated from a silver mine Silver nitrate

Håkonsholm et al (2023) Characterisation of antibiotic- and heavy metal-resistance genes on plasmids N/A

Håkonsholm et al (2022) Whole-genome analysis to characterise resistance in K. pneumoniae N/A

Hanczvikkel et al (2018) Evolution of transmissible silver resistance in K. pneumoniae Silver nitrate

He et al (2022) Characterisation of hypervirulent carbapenem-resistant K. pneumonaie N/A

Hosnedlova et al (2022) Assessment of effect of AgNPs on S. aureus and E. coli biofilms Silver nanoparticles

Hosny et al (2019) Detection of silver resistance in isolates from wounds and burns and 
characterisation of plasmid-mediated silver resistance genes

Silver nitrate

Johnson et al (2005) Genetic characterisation of a pathogenic E. coli plasmid N/A

Joseph et al (2012) Analysis of genomic sequences in Cronobacter species N/A

Kamathewatta et al 
(2020)

Detection of pathogen E. hormaechei and genomic analysis N/A

Kaur and Vadehra (1986) Characterisation of mechanism of silver resistance in K. pneumoniae Silver nitrate

Kędziora et al (2020) Assessment of long-term exposure of bacteria to silver nanoformulations Silver nanoparticles

Khor and Jegathesan 
(1983)

Characterisation of heavy metal resistance in antibiotic-resistant Gram 
negative bacteria

Silver nitrate

Klonowska et al (2020) Genomic analysis of heavy metal resistance genes in C. neocaledonicus N/A
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Table 4. Overview of characteristics of silver resistance studies.

Author Study aim Form of silver

Kremer and Hoffmann 
(2012)

Analysis of genetic differences in bacteria causing septicemia outbreak Silver nitrate

Kucerova et al (2010) Genomic analysis of C. sakazakii and silver resistance genes N/A

Lau et al (2017) Analysis of the effect of PVP-capped AgNPs on Citrobacter sp. and Enterococcus 
sp.

Silver nanoparticles

Li et al (1997) Examination of the role of porin deficiency and its role in silver resistance Silver nitrate

Lima de Silva et al (2012) Assessment of heavy metal tolerance of sewage-isolated bacteria Silver nitrate

Loh et al (2009) Determination of the prevalence of silver resistance genes in bacteria isolates 
from humans and animals and their susceptibility to silver-containing 
Hydrofiber wound dressing

Silver dressing

Losasso et al (2014) Assessment of antibacterial activity of AgNPs of different Salmonella serovars Silver nanoparticles

Mann et al (2021) Assessment of the long-term use of AgNPs on biofilm-forming pathogenic 
bacteria

Silver nanoparticles

Mastrorilli et al (2018) Genomic analysis of Salmonella serovar including heavy metal resistance 
elements

N/A

McCarlie et al (2023) Genomic analysis of highly resistant Serratia sp. N/A

McNeilly et al (2023) Assessment of AgNP adaptation in A. baumannii Silver nanoparticles

Miloud et al (2021) Assessment and genetic analysis of heavy metal and antibiotic resistance in 
bacteria

Silver nitrate

Monych and Turner 
(2020)

Characterisation of interaction between P. aeruginosa and tolerance of S. 
aureus to silver

Silver nitrate

Muller and Merrett (2014) Analysis of pyocyanin production by P. aeruginosa and resistance to silver Silver nitrate

Muller (2018) Assessment of redox-based silver resistance gained by pyocyanin production 
by P. aeruginosa

Silver nitrate

Nicolás et al (2018) Genetic analysis of clinical isolate of K. quasipneumoniae subsp. 
similipneumoniae

N/A

Panáček et al (2021) Characterisation of resistance to AgNPs by binding AgNPs to cyanographene Silver nanoparticles

Pant et al (2022) Characterisation of overcoming of AgNP resistance in P. aeruginosa using 
bismuth nanoparticles

Silver nanoparticles

Percival et al (2008) Prevalence of silver resistance in bacteria isolated from diabetic foot ulcers Aquacel Ag

Pirnay et al (2003) Molecular epidemiology analysis of silver-resistant P. aeruginosa clone Silver sulfadiazine

Potgieter and Meidany 
(2018)

Evaluation of the penetration of nanocrystalline silver through wound dressing 
mediums

Nanocrystalline silver

Randall et al (2015) Molecular and genetic analysis of silver resistance in E. coli Silver nitrate

Riley and Mee (1982) Assessment of the susceptibility of Bacteoides spp. to heavy metals Silver nitrate

Saeb et al (2017) Genetic analysis of a spontaneous nanosilver resistant P. mirabilis strain SCDR1 Silver nanoparticles

Safain et al (2023) Assessment of prevalence of silver resistance determinants in wound infection 
bacteria

Silver nitrate
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Table 4. Overview of characteristics of silver resistance studies.

Author Study aim Form of silver

Salomoni et al (2017) Antibacterial effect of AgNPs in P. aeruginosa Silver nanoparticles

Sanjar et al (2024) Genomic analysis of P. aeruginosa isolated from post-burn infections N/A

Sano et al (2023) Genomic analysis of L. adecarboxylata N/A

Sedlak et al (2012) Engineering of a silver-binding periplasmic protein promoting silver tolerance Silver nitrate

Silver et al (1999) Genetic analysis of silver resistance genes Silver nitrate

Souza et al (2022) Analysis of heavy metal and biocide resistance genes in S. enterica N/A

Staehlin et al (2016) Molecular and genetic analysis of heavy metal resistance in Enterobacter N/A

Su et al (2011) Assessment of novel nanohybrids of AgNPs on clay platelets for inhibiting silver 
resistance

Silver nanoparticles

Sütterlin et al (2017) Genetic analysis of silver resistance genes in isolates of Enterobacter and 
Klebsiella species

N/A

Sütterlin et al (2014) Genetic analysis of silver resistance genes in E. coli isolates N/A

Sütterlin et al (2012) Assessment of silver-based wound dressings on bacteria isolated from chronic 
leg ulcers and susceptibility in vitro to silver

Aquacel Ag; silver 
nitrate

Sütterlin et al (2018) Genetic analysis of heavy metal susceptibility genes of E. coli N/A

Vasishta et al (1989) Assessment of heavy metal resistance to clinical isolates of P. aeruginosa Silver nitrate

Vázquez et al (2023) Genetic analysis of antibiotic resistance in clinical isolates of S. enterica N/A

Vilela et al (2022) Prevalence analysis of silver resistance elements in S. enterica N/A

Villapún et al (2021) Assessment of effects of repeated exposure of nosocomial pathogens to silver 
and selection of silver resistance

Silver nitrate

Wang et al (2022) Genetic characterisation of silver and antibiotic resistance among Gram-
negative pathogens isolated from wounds

N/A

Wiegand et al (2012) Assessment of adaptation capacity of S. aureus to antiseptics (e.g., silver 
nitrate)

Silver nitrate

Woods et al (2009) Genetic analysis of prevalence of silver resistance genes in bacteria isolated 
from wounds

Silver nitrate

Woolley et al (2022) Molecular and genetic analysis of high level silver ion tolerance in K. 
pneumoniae

Silver nitrate

Woyda et al (2024) Assessment of genetic characteristics of Salmonella isolates N/A

Wu et al (2022) Assessment of silver resistance development in bacteria challenged by AgNPs Silver nanoparticles

Wu et al (2007) Genomic analysis of effectiveness of silver to prevent biofilm formation Silver nitrate

Yang et al (2020) Assessment of antibiotic and heavy metal resistance in E. coli Silver nitrate

Zhao and Kuipers (2021) Assessment antimicrobial activity of Ag-nisin NPs in biofilm-forming bacteria Silver nanoparticles; 
silver nitrate

Zingale et al (2023) Molecular analysis of interaction of silver ions with SilE model peptides Silver nitrate

Zingali et al (2020) Genetic analysis of multiple drug resistant plasmid in E. coli N/A
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Table 5. Distribution of important silver-resistant microorganisms in articles featured in review.

ESKAPE pathogens
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Alotaibi et al (2022) n n n n n n n

Ashraf et al (2014) n n n n n n

Binsuwaidan et al (2024) n n n

Brady et al (2003) ■ ■ ■ ■ ■ ■ ■

Bridges et al (1979) ■

Elbehiry et al (2019) ■

Elkrewi et al (2017) (■) (■) ■ ■ ■ ■

Finley et al (2015) (■) ■ ■ ■ ■ ■ ■ ■

González-Fernández et al 
(2020)

■ ■ ■ ■ ■ ■ ■

Graves et al (2015) ■

Guo et al (2019) ■

Gugala et al (2019) ■ ■ ■

Gupta et al (1998) ■

Hanczvikkel et al (2018) ■

Hosnedlova et al (2022) ■ ■

Hosny et al (2019) ■ ■ ■ ■ ■ ■

Kaur and Vadehra (1986) ■

Kędziora et al (2020) ■ ■ ■ ■

Khor and Jegathesan 
(1983)

(■) (■) ■ ■ ■ ■

Lau et al (2017) (■) ■

Lima de Silva et al (2012) ■ (■) ■ ■ ■

Loh et al (2009) ■

Losasso et al (2014) ■

Mann et al (2021) ■

McNeilly et al (2023) ■

Miloud et al (2021) ■ ■ ■ ■ ■
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Monych and Turner (2020) n

Muller (2018) n n

Muller and Merrett (2014) ■

Panáček et al (2021) ■ ■ ■

Pant et al (2022) ■

Percival et al (2008) ■

Pirnay et al (2003) ■

Potgieter and Meidany 
(2018)

■ ■ ■

Riley and Mee (1982) ■

Salomoni et al (2017) ■

Safain et al (2023) ■ ■ ■ ■ ■ ■ ■

Sedlak et al (2012) ■

Souza et al (2022) ■

Su et al (2011) (■) ■

Sütterlin et al (2012) (■) ■ (■) ■ ■

Sütterlin et al (2017) ■ ■ ■

Sütterlin et al (2018) ■

Vasishta et al (1989) ■

Villapún et al (2021) ■ ■ ■ ■

Wiegand et al (2012) ■

Woods et al (2009) ■ ■ ■ ■ ■ ■ ■ ■

Wu et al (2007) ■

Yang et al (2020) ■

Zhao et al (2021) ■ ■ ■ ■ ■

Notes:
(■) – general reference to genus mentioned rather than specific species
Lighter grey references are ESKAPE pathogen-related articles; darker grey references are wound- and ESKAPE-related articles
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recognized for several decades (Gupta et 
al., 1999), it was a common perception that 
resistance to nanosilver was unlikely, due to 
the multitargeting antimicrobial mechanisms 
of the nanoparticles (Gunawan et al, 2017; 
Valentin et al, 2020). There has been growing 
evidence regarding the development of 
adaptation phenomena to nanosilver, and 
this evidence has been observed in several 
bacterial species, including those of clinical 
significance, such as E. coli, P. aeruginosa, 
and S. aureus (Gunawan et al, 2013; Graves 
et al, 2015; Panáček et al, 2018; Valentin et al, 
2020; Mann et al, 2021; Stabryla et al, 2021). 
The introduction of AgNP technologies and its 
effective use for treating wound infections have 
been suggested to reduce the likelihood of 
silver resistance (Pelgrift and Friedman, 2013). 
However, several articles have raised concerns 
over the development of silver resistance 
because of AgNP use (Kamat and Kumari, 2023; 
May et al, 2022).

The results from this review show that 
there is an increasing number of articles being 
published that are related to silver resistance 
in microorganisms, particularly in the last 
5-10 years (n=105). Resistance to silver can 
be described as genotypic or phenotypic. 
Genotypic silver resistance refers to the 
inherent or acquired genetic mechanisms 
(determined by specific genes and plasmids) 
that allow bacteria to survive exposure to silver 
compounds (Randall et al, 2015). Phenotypic 

silver resistance refers to a microorganism’s 
observable ability to survive and grow in the 
presence of silver compounds, even though it 
doesn’t involve any genetic changes (Corona 
and Martinez, 2013). Phenotypic resistance 
include specific processes such as biofilm 
formation. Figure 3 shows the increase in 
articles in a subset of these 105 articles, namely, 
describing phenotypic silver resistance (n=50).

Wiegand et al (2012) analysed the 
adaptation capacity of S. aureus to several 
commonly used antiseptics (including silver 
nitrate). The bacteria were incubated with 
the appropriate IC50 concentrations of the 
antiseptics for 100 days. S. aureus quickly 
adapted to high concentrations of silver nitrate 
over time. The authors noted that, although 
silver-containing wound dressings were still 
as effective against silver-adapted S. aureus, 
overuse of silver may raise future problems. 
Elkrewi et al (2017) surveyed the prevalence of 
silver resistance in clinical isolates and reported 
that overt silver resistance is not common. 
However, upon silver challenge, high-level silver 
resistance was selected at high frequency in 
76% of isolates of Enterobacter spp., 58% of 
isolates of Klebsiella spp., and 0.7% of isolates 
of E. coli. Other studies have shown that, 
although genes encoding silver resistance can 
be identified in a number of bacterial species, 
phenotypic resistance is relatively low. Silver 
resistance was examined in three clinically 
important Enterobacteriaceae genera (Sütterlin 
et al, 2017). Genes encoding silver resistance 
were detected most frequently in Enterobacter 
spp. (48%), followed by Klebsiella spp. (41%) 
and E. coli 4%. Phenotypical resistance to 
silver nitrate was found in Enterobacter (13%) 
and Klebsiella (3%) isolates. The results of 
Villapún et al (2021) suggest that the clinical 
use of silver is unlikely to select for silver 
resistance. Their studies used three bacteria 
from the World Health Organization (WHO) 
priority pathogens list: E. coli, P. aeruginosa 
and S. aureus. S. epidermidis was also studied. 
And the pathogens were evaluated against 
silver nitrate.

Several articles report the evolution of 
silver resistance of several microorganisms 
when challenged in vitro with AgNPs. McNeilly 
et al (2023) describe the development of a 
resistant phenotype in A. baumannii to AgNPs. 
Graves et al (2015), using a non-silver-resistant 
E. coli (using a strain that does not have any 
known silver resistance elements), found that 
that exposure to low concentrations of AgNPs 
resulted in the development of silver resistance, 
and that this resistance required relatively few 
mutation steps. A silver-sensitive P. aeruginosa, 
isolated from a burn wound and sensitive to Figure 3

Figure 3. Review-
identified articles 
published per year and 
cumulatively related 
to phenotypic silver 
resistance in bacteria 
between 1975 and 2024 
(n=50).
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AgNPs, exhibited reduced silver sensitivity with 
prolonged exposure to silver; a resistance 
that was reversed in the subsequent absence 
of silver (Mann et al, 2021). Stable acquisition 
of silver resistance has also been identified. 
Growing S. aureus in the presence of sublethal 
concentrations of AgNPs resulted in the retention 
of silver resistance in the microorganisms by 
multiple passages of the bacteria under silver-
free conditions (Elbehiry et al, 2019).

The development of silver resistance 
in microorganisms is heterogeneous; not 
all microorganisms, when exposed to 
prolonged periods develop silver resistance. 
Mutations for silver resistance develop due to 
selection pressures exerted by silver-based 
antimicrobials, leading to the emergence 
of bacteria with mechanisms to tolerate or 
overcome silver’s toxicity. Bacteria mutation 
rates are high, typically ranging from 106 
to 109 base substitutions per nucleotide 
per generation, but bacteria have been 
identified with approximately 100-fold higher 
mutation frequencies in clinical environments 
(Chevallereau et al, 2019). Natural genetic 
variation and the selective pressure exerted 
by prolonged exposure to silver results in 
heterogeneity in resistance (Habboush and 
Guzman, 2025).

Is silver resistance a rapidly developing issue 
in wound pathogens?
Antibiotics have been used widely for the 
treatment of wound infection. An alternate 
strategy to the use of antibiotics is the use 
of antimicrobial metals in the form of metal 
ions (e.g., silver ions) or nanoparticles. With 
the growing number of studies identifying the 
emergence of silver-resistant microorganisms, 
the implications for wounds and wound 
infection are particularly worrisome. Silver is 
considered one of the most potent, especially 
when prepared as nanoparticles (Roman et 
al, 2020). Silver has become commonplace in 
the clinical setting (Hussey et al, 2019). Despite 
this, examples of acquired resistance are 
rarely reported in the literature (Binsuwaidan 
et al, 2024). 

Chronic wounds, however, provide a unique 
environment whereby silver dressings may 
be present in situ over prolonged periods of 
time, increasing the potential for bacterial 
phenotypic adaptation (Binsuwaidan et al, 
2024). The use of silver-based treatments has 
especially increased in burn and wound care 
(Khansa et al, 2019). As a result of increased 
silver utilisation, questions concerning 
antimicrobial stewardship (AMS) and fears 
of widespread silver resistance emerging in 
clinical bacteria have been raised (Chopra, 

2007). The use of AgNPs has been reported to 
result in the growth of resistant phenotypes 
(Gunawan et al, 2017; Panáček et al, 2018), 
thus calling into question the continuous and 
long-term utility of these nanomaterials in 
various formulations, wound dressings, medical 
devices, or other common household items. It is 
important to note that the WHO has developed 
a list of antibiotic resistant, global priority 
pathogens (WHO, 2024) as leading causes of 
nosocomial infections, collectively referred to 
as the ESKAPE pathogens (Rice, 2008; Santajit 
and Indrawattana, 2016). The ESKAPE organisms 
represent the model archetype of virulent 
and adaptive bacterial organisms, as they 
frequently cause severe and chronic disease 
and some of these pathogens are instrumental 
in wound infection. 

A number of articles have shown the 
presence of silver resistance in wound isolate 
microorganisms which reinforce the concern 
clinicians have that silver resistance in wound 
care is becoming a significant issue (Bridges 
et al, 1979; Pirnay et al, 2003; Loh et al, 2009; 
Woods et al, 2009; Sütterlin et al, 2012; Finley et 
al, 2015; Hosny et al, 2019; Percival et al, 2019; 
Safain et al, 2023; Binsuwaidan et al, 2024). 
Hosny et al (2019), examining 150 clinical 
isolates from burns and other wounds found 
19 silver-resistant bacterial isolates. In a small 
study of 14 patients with chronic leg ulcers 
treated for 3 weeks with silver-based dressings, 
silver dressings had a limited effect on the 
primary pathogens (Sütterlin et al, 2012). In 
vitro evolution of silver resistance in these 
leg ulcer isolates indicated that it took only 
three weeks for silver resistance to emerge in 
isolates with silver resistance genes (sil genes). 
In a separate study, clinical isolates (E. coli, P. 
aeruginosa, S. aureus) isolated from patients 
with chronic diabetic foot wounds were 
assessed for their sensitivity to silver before 
and after passaging in the presence of ionic 
silver. Repeated exposure to ionic silver did not 
result in planktonic phenotypic silver resistance 
(Binsuwaidan et al, 2024). 

However, there were significant changes 
in ulcer-derived Pseudomonas biofilm 
formation and sensitivity, with increased levels 
of biofilm formation being seen in this strain 
when cultured in the presence of silver. There 
was also an associated reduction in silver 
susceptibility.

Finley et al (2015) screened 859 clinical 
isolates (trauma and burn wounds) noted 
two isolates (K. pneumonia and E. cloacae) 
that were able to grow at high levels of silver, 
and estimated that only 0.2% had clinically 
significant phenotypic expression of silver 
resistance. However, they concluded that 
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these results indicated silver resistance at a 
level that was capable of greatly reducing, 
if not negating, the effectiveness of most 
commercially available silver dressings, 
compared to non-resistant counterparts of 
the same species. The authors suggest silver 
resistance at a level that could significantly 
impact wound care and the use of silver-based 
dressings. Binsuwaidan et al (2024) highlighted 
that silver resistance in microorganisms is 
complex, particularly as there are no universally 
accepted guidelines to define phenotypic 
silver resistance.

Genetic (genotypic) and molecular biology 
(mechanism of action, MOA) analysis of silver 
resistance
Genomic-based silver resistance in bacteria 
is linked to genes and plasmids that code 
for silver resistance (Terzioğlu et al, 2022). 
Decreased susceptibility to silver ions/
AgNPs has been linked to silver resistance 
genes encoding, for example, a silver binding 
protein, as well as additional genes involved 
in restricting the presence of silver within the 
microorganism (Maillard et al, 2021; Terzioğlu et 
al, 2022). Silver resistance can arise without the 
presence of silver resistance genes (Randall et 
al, 2015). Therefore, phenotypic silver resistance 
whereby microorganisms show signs of silver 
resistance is likely to provide a better indication 
of clinical impact than the presence or absence 
of silver resistance genes themselves. A 
recent review has proposed that the bacterial 
mechanism of silver resistance involves a 
combination of interconnected systems: (1) 
Inducing extracellular silver aggregation and 
reduction of Ag+ to Ag0; (2) Preventing silver 
from entering cells; (3) Efflux of silver in cells; (4) 
Self-repair of damage (Li and Xu, 2024).

Our review identified 55 articles related 
to the study of the genetics of silver 
resistance and/or the mechanism of action, 
particularly in the identification of genes and 
genetic elements in the genetic material 
of microorganisms that may confer silver 
resistance. Several microorganisms isolated 
from chronic diabetic foot wounds were 
identified as containing silver resistance 
genes (Percival et al, 2008). Two silver-
resistant bacteria were identified: E. cloacae, 
a microorganism the authors point out that 
is rarely implicated as a primary pathogen in 
chronic wounds. They also find that no wound 
pathogens (S. aureus and P. aeruginosa) 
were found to contain silver-resistant genes. 
Studies assessing the prevalence of silver 
resistance genes animal and human wounds 
found that the presence of a silver-resistant 
gene did not afford protection to the organism 

in the presence of the silver dressing (Loh et 
al, 2009; Woods et al, 2009). Finley et al (2015) 
screened 859 clinical isolates (from trauma 
and burn wounds) and identified 31 that 
contained at least one silver resistance gene. 
However, despite having these genes most 
of the bacteria displayed little or no increase 
in resistance to ionic silver. Their findings 
suggest a low prevalence of these genes (3.6% 
minimum) occurring in hospital isolates and 
even fewer (0.2%) with clinically significant 
phenotypic expression of silver resistance. 
In a previously discussed study, Safain et al 
(2023) found that, although 65% (101/155) of 
sil gene-bearing isolates were resistant for 
silver nitrate, 17% (59/346) of the sil-negative 
isolates demonstrated phenotypic silver nitrate 
resistance (Safain et al, 2023).

What are the implications of silver resistance 
for wound care?
Finley et al (2015), assaying the effectiveness 
of silver-based wound dressings against silver 
resistant strains of microorganisms, indicated 
that silver resistance was at a level that is 
capable of greatly reducing, if not negating, the 
effectiveness of most commercially available 
silver dressings compared with non-resistant 
counterparts, and that acute emergence 
of silver resistance would have extensive 
consequences on wound therapies. As a 
consequence of the widespread development 
of microbial resistance to silver it is imperative 
to identify potential antimicrobial agents that 
may be used to combat wound infections 
that minimises or avoids the development 
of resistance, are not detrimental to healing 
(i.e., are not cytotoxic to tissues), do not cause 
adverse effects (e.g., allergic reactions), but 
have a wide range of antimicrobial activity. In 
addition, there should be strict monitoring on 
the use of silver in medical settings with the 
establishment of an approved standardised 
method for silver resistance detection 
(Hosny et al, 2019).

Our review identified several studies related 
to the development of therapies as alternatives 
to silver-based antimicrobials to circumvent 
the development of silver resistance. One 
study examined the potential of bismuth-
based nanoparticles (BiNPs) (Pant et al, 2022). 
Another suggests that covalent bonding of 
silver to cyanographene over comes silver 
resistance to AgNPs (Panáček et al, 2021). Pant 
et al (2022) showed that BiNPs exhibited a 
potent broad-spectrum antimicrobial activity 
against P. aeruginosa and S. aureus, and were 
effective against silver resistant bacteria. 
BiNPs did not appear to contribute to the 
development of bismuth-resistant phenotypes 
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after 30 passages of consecutive exposure to 
sub-lethal doses of NPs. Cyanographene is 
an efficient covalent trap for silver ions, and 
strong covalent immobilisation of silver and 
has potent antibacterial activity (similar to free 
silver ions), activity in AgNP-resistant bacterial 
strains, and very low leaching of silver ions 
or AgNPs (Panáček et al, 2021). A nanohybrid 
(AgNPs supported on 1nm-thick silicate 
“platelets”) showed a strong antibacterial 
activity on all pathogens assessed, including 
silver-resistant E. coli (Su et al, 2011). The 
authors suggest that the nanohybrid bypasses 
the usual ionic silver mechanisms on silver-
resistant bacteria leading to effective 
antibacterial activity in silver-resistant E. coli.

Conclusion
This review has identified a substantial 
number of articles that provide evidence 
that antimicrobial silver resistance is a 
growing problem in healthcare. In the general 
healthcare landscape, a wide variety of 
pathogens have been identified that have 
developed silver resistance [Table 5]. The 
implications of this resistance are serious 
in that silver is widely used in healthcare, 
domestic and agricultural applications. 
Additionally, and importantly, silver treatments 
are widely used in the prevention/treatment 
of infection in wounds as dressings, irrigation/
instillation solutions and gels etc., to great 
effect, with an initial two-weeks treatment 
recommendation followed by a management 
re-evaluation (Leaper, 2012). But several 
authors have described wound pathogens as 
developing resistance, and thus becoming 
difficult to treat when infection occurs.

Ultimately, the impact of this development 
of resistance is that these treatments become 
less effective and the toolbox available to 
clinicians diminishes. Therefore, while silver 
remains a valuable tool in wound care, its 
use should be cautious and accompanied by 
ongoing research into resistance mechanisms 
and alternative treatments. The development 
of new antimicrobial agents that rely upon 
chemical mechanisms (e.g., bismuth) may 
also result in the development of resistance. 
A focus a on physical mechanism-based 
approach to antimicrobial action may avoid 
chemical-based resistance mechanisms in 
the future.	

Combining antimicrobial agents with a 
targeted and sustainable approach could help 
mitigate the risks associated with resistance 
and ensure effective wound management. 
Because of the widespread development of 
silver resistance, resistance monitoring should 
form part of AMS practices.

Also, it is imperative that alternative 
treatments to antibiotics and some antiseptics 
(e.g., silver) are identified and used as 
alternatives. These alternatives should have 
a good in vitro and in vivo/clinical evidence 
base, not cause any detriment to healing and 
be cost-effective. In addition, it is important 
to identify novel antimicrobial agents that do 
not cause resistance but, at the same time, 
have wide ranging antimicrobial activity. DACC, 
which acts via a physical-based mechanism 
which does not lead to the development of 
resistance, is an example of an antimicrobial 
agent used in wound dressings that is today 
providing a route to delivering effective 
antimicrobial activity with no resistance. 
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